Немного информации о кубе и о способах того, как вычислить площадь поверхности куба

Куб — удивительная фигура. Он одинаковый со всех сторон. Любая его грань может вмиг стать основанием или боковой. И от этого ничего не изменится. А формулы для него всегда легко запоминаются. И неважно, что нужно найти - объем или площадь поверхности куба. В последнем случае даже не нужно учить что-то новое. Достаточно помнить только формулу площади квадрата.

Что такое площадь?

Эту величину принято обозначать латинской буквой S. Причем это справедливо для школьных предметов, таких как физика и математика. Измеряется она в квадратных единицах длины. Все зависит от данных в задаче величин. Это могут быть мм, см, м или км в квадрате. Причем возможны случаи, когда единицы даже не указаны. Идет речь просто о числовом выражении площади без наименования.

Так что же такое площадь? Это величина, которая является числовой характеристикой рассматриваемой фигуры или объемного тела. Она показывает размер ее поверхности, которая ограничена сторонами фигуры.

площадь поверхности куба

Какая фигура называется кубом?

Эта фигура является многогранником. Причем непростым. Он правильный, то есть у него все элементы равны друг другу. Будь то стороны или грани. Каждая поверхность куба представляет собой квадрат.

Другое название куба — правильный гексаэдр, если по-русски, то шестигранник. Он может быть образован из четырехугольной призмы или параллелепипеда. При соблюдении условия, когда все ребра равны и углы образуют 90 градусов.

Эта фигура настолько гармонична, что часто используется в быту. Например, первые игрушки малыша — кубики. А забава для тех, кто постарше, — кубик Рубика.

кубики

Как связан куб с другими фигурами и телами?

Если начертить сечение куба, которое проходит через три его грани, то оно будет иметь вид треугольника. По мере удаления от вершины сечение будет все больше. Настанет момент, когда пересекаться будут уже 4 грани, и фигура в сечении станет четырехугольником. Если провести сечение через центр куба так, чтобы оно было перпендикулярно его главным диагоналям, то получится правильный шестиугольник.

сечения куба

Внутри куба можно начертить тетраэдр (треугольную пирамиду). За вершину тетраэдра берется один из его углов. Остальные три совпадут с вершинами, которые лежат на противоположных концах ребер выбранного угла куба.

В него можно вписать октаэдр (выпуклый правильный многогранник, который похож на две соединенные пирамиды). Для этого нужно найти центры всех граней куба. Они будут вершинами октаэдра.

Возможна и обратная операция, то есть внутрь октаэдра реально вписать куб. Только теперь центры граней первого станут вершинами для второго.

Метод 1: вычисление площади куба по его ребру

Для того чтобы вычислить всю площадь поверхности куба, потребуется знание одного из его элементов. Самый простой способ решения, когда известно его ребро или, другими словами, сторона квадрата, из которого он состоит. Обычно эта величина обозначается латинской буквой «а».

Теперь нужно вспомнить формулу, по которой вычисляется площадь квадрата. Чтобы не запутаться, введено ее обозначение буквой S1.

1

Для удобства лучше задать номера всем формулам. Эта будет первой.

Но это площадь только одного квадратика. Всего их шесть: 4 по бокам и 2 снизу и сверху. Тогда площадь поверхности куба вычисляется по такой формуле: S = 6 * a2. Ее номер 2.

2

площадь полной поверхности куба

Метод 2: как вычислить площадь, если известен объем тела

Этот способ сводится к тому, чтобы сосчитать длину ребра по известному объему. И потом уже воспользоваться известной формулой, которая здесь обозначена цифрой 2.

Из математического выражения для объема гексаэдра выводится то, по которому можно сосчитать длину ребра. Вот она:

3

Нумерация продолжается, и здесь уже цифра 3.

Теперь его можно вычислить и подставить во вторую формулу. Если действовать по нормам математики, то нужно вывести такое выражение:

4

Это формула площади всей поверхности куба, которой можно воспользоваться, если известен объем. Номер этой записи 4.

Метод 3: расчет площади по диагонали куба

Для того чтобы рассчитать площадь полной поверхности куба, также потребуется вывести ребро через известную диагональ. Здесь используется формула для главной диагонали гексаэдра:

5

Это формула №5.

Из нее легко вывести выражение для ребра куба:

6

Это шестая формула. После его вычисления можно снова воспользоваться формулой под вторым номером. Но лучше записать такую:

7

Она оказывается пронумерованной цифрой 7. Если внимательно посмотреть, то можно заметить, что последняя формула удобнее, чем поэтапный расчет.

Метод 4: как воспользоваться радиусом вписанной или описанной окружности для вычисления площади куба

Если обозначить радиус описанной около гексаэдра окружности буквой R, то площадь поверхности куба будет легко вычислить по такой формуле:

8

Ее порядковый номер 8. Она легко получается благодаря тому, что диаметр окружности полностью совпадает с главной диагональю.

Обозначив радиус вписанной окружности латинской буквой r, можно получить такую формулу для площади всей поверхности гексаэдра:

9

Это формула №9.

Несколько слов о боковой поверхности гексаэдра

Если в задаче требуется найти площадь боковой поверхности куба, то нужно воспользоваться уже описанным выше приемом. Когда уже дано ребро тела, то просто площадь квадрата нужно умножить на 4. Эта цифра появилась из-за того, что боковых граней у куба всего 4. Математическая запись этого выражения такая:

10

Ее номер 10. Если даны какие-то другие величины, то поступают аналогично описанным выше методам.

Примеры задач

Условие первой. Известна площадь поверхности куба. Она равна 200 см². Необходимо вычислить главную диагональ куба.

Решение.

1 способ. Нужно воспользоваться формулой, которая обозначена цифрой 2. Из нее будет несложно вывести «а». Эта математическая запись будет выглядеть как квадратный корень из частного, равного S на 6. После подстановки чисел получается:

а = √ (200/6) = √ (100/3) = 10 √3 (см).

Пятая формула позволяет сразу вычислить главную диагональ куба. Для этого нужно значение ребра умножить на √3. Это просто. В ответе получается, что диагональ равна 10 см.

2 способ. На случай если забылась формула для диагонали, но помнится теорема Пифагора.

Аналогично тому, как было в первом способе, найти ребро. Потом нужно записать теорему для гипотенузы два раза: первую для треугольника на грани, вторую для того, который содержит искомую диагональ.

х² = а² + а², где х — диагональ квадрата.

d² = х² + а² = а² + а² + а² = 3 а². Из этой записи легко видно, как получается формула для диагонали. А дальше все расчеты будут, как в первом способе. Он немножко длиннее, но позволяет не запоминать формулу, а получить ее самостоятельно.

Ответ: диагональ куба равна 10 см.

чертежи куба

Условие второй. По известной площади поверхности, которая равна 54 см2, вычислить объем куба.

Решение.

Пользуясь формулой под вторым номером, нужно узнать значение ребра куба. То, как это делается, подробно описано в первом способе решения предыдущей задачи. Проведя все вычисления, получим, что а = 3 см.

Теперь нужно воспользоваться формулой для объема куба, в которой длина ребра возводится в третью степень. Значит, объем будет считаться так: V = 33 = 27 см3.

Ответ: объем куба равен 27 см3.

площадь боковой поверхности куба

Условие третьей. Требуется найти ребро куба, для которого выполняется следующее условие. При увеличении ребра на 9 единиц площадь всей поверхности увеличивается на 594.

Решение.

Поскольку явных чисел в задаче не дано, только разности между тем, что было, и тем, что стало, то нужно ввести дополнительные обозначения. Это несложно. Пусть искомая величина будет равна «а». Тогда увеличенное ребро куба будет равно (а + 9).

Зная это, нужно записать формулу для площади поверхности куба два раза. Первая - для начального значения ребра - совпадет с той, которая пронумерована цифрой 2. Вторая будет немного отличаться. В ней вместо «а» нужно записать сумму (а + 9). Так как в задаче идет речь о разности площадей, то нужно вычесть из большей площади меньшую:

6 * (а + 9)2 - 6 * а2 = 594.

Нужно провести преобразования. Сначала вынести за скобку 6 в левой части равенства, а потом упростить то, что останется в скобках. А именно (а + 9)2 - а2. Здесь записана разность квадратов, которую можно преобразовать так: (а + 9 - а)(а + 9 + а). После упрощения выражения получается 9(2а + 9).

Теперь его нужно умножить на 6, то есть то число, что было перед скобкой, и приравнять к 594: 54(2а + 9) = 594. Это линейное уравнение с одной неизвестной. Его легко решить. Сначала нужно раскрыть скобки, а потом перенести в левую часть равенства слагаемое с неизвестной величиной, а числа — в правую. Получится уравнение: 2а = 2. Из него видно, что искомая величина равна 1.

Ответ: а = 1.