Все тонкости того, как вычислить площадь параллелепипеда

Параллелепипед - самая распространенная фигура из тех, что окружают людей. Большинство помещений представляют собой именно его. Особенно важно знать площадь параллелепипеда, хотя бы его боковых граней, во время ремонта. Ведь нужно точно знать, сколько материала приобрести.

Что он собой представляет?

Это призма с четырехугольным основанием. Поэтому у нее четыре боковых грани, которые являются параллелограммами. То есть такое тело имеет всего 6 граней.

Для определения параллелепипеда в пространстве у него определяют площадь и объем. Первая может быть как отдельно для каждой грани, так и для всей поверхности. К тому же выделяют еще и площадь только боковых граней.

Какие существуют виды параллелепипедов?

Наклонный. Такой, у которого боковые грани образуют с основанием угол, отличный от 90 градусов. У него верхний и нижний четырехугольники не лежат друг напротив друга, а сдвинуты.

наклонный парллелепипед

Прямой. Параллелепипед, боковые грани которого являются прямоугольниками, а в основании лежит фигура с произвольными величинами углов.

Прямоугольный. Частный случай предыдущего вида: в его основании находится прямоугольник.

прямоугольный параллелепипед

Куб. Особый тип прямого параллелепипеда, в котором все грани представлены квадратами.

Некоторые математические особенности параллелепипеда

Может возникнуть ситуация, когда они окажутся полезными в том, чтобы найти площадь параллелепипеда.

  • Грани, которые лежат напротив друг друга, не только параллельны, но и равны.
  • Диагонали параллелепипеда точкой пересечения делятся на равные части.
  • Более общий случай, если отрезок соединяет две точки на поверхности тела и проходит через точку пересечения диагоналей, то он делится этой точкой пополам.
  • Для прямоугольного параллелепипеда справедливо равенство, в котором в одной его части стоит квадрат диагонали, а в другой - сумма квадратов его высоты, ширины и длины.

элементы параллелепипеда

Площади прямого параллелепипеда

Если обозначить высоту тела как «н», а периметр основания буквой Рос, то вся боковая поверхность может быть вычислена по формуле:

Sбок = Рос * н

Используя эту формулу и определив площадь основания, можно сосчитать полную площадь:

S = Sбок + 2 * Sос

В последней записи Sос., то есть площадь основания параллелепипеда, может быть вычислена по формуле для параллелограмма. Другими словами, потребуется выражение, в котором нужно перемножить сторону и высоту, опущенную на нее.

площадь параллелепипеда

Площади прямоугольного параллелепипеда

Принято стандартное обозначение длины, ширины и высоты такого тела буквами «а», «в» и «с» соответственно. Площадь боковой поверхности будет выражаться формулой:

Sбок= 2 * с * (а + в)

Чтобы вычислить полную площадь прямоугольного параллелепипеда, потребуется такое выражение:

S = 2 * (ав + вс + ас)

Если окажется необходимым узнать площадь его основания, то достаточно вспомнить, что это прямоугольник, а значит, достаточно перемножить «а» и «в».

Площади куба

Его боковая поверхность образована четырьмя квадратами. Значит, чтобы ее найти, потребуется воспользоваться известной для квадрата формулой и умножить ее на четыре.

Sбок = 4 * а2

А из-за того, что его основания - такие же квадраты, полная площадь определится по формуле:

S = 6 * а2

площадь основания параллелепипеда

Площади наклонного параллелепипеда

Поскольку его грани - это параллелограммы, то нужно узнать площадь каждого из них и потом сложить. К счастью, противолежащие равны. Поэтому вычислять площади нужно только три раза, а потом умножить их на два. Если записать это в виде формулы, то получится следующее:

Sбок = (S1 + S2) * 2,

S = (S1 + S2 + S3) * 2

Здесь S1 и S2 являются площадями двух боковых граней, а S3 - основания.

Задачи по теме

Задание первое. Условие. Необходимо узнать длину диагонали куба, если площадь всей его поверхности равна 200 мм2.

Решение. Начать нужно с получения выражения для искомой величины. Ее квадрат равен трем квадратам стороны куба. Это значит, что диагональ равна «а», умноженной на корень из 3.

Но сторона куба неизвестна. Здесь потребуется воспользоваться тем, что известна площадь всей поверхности. Из формулы получается, что «а» равно квадратному корню из частного S и 6.

Осталось только сосчитать. Ребро куба оказывается равным √ (200/6), что равно 10/ √3 (мм). Тогда диагональ получится равной (10/ √3) * √3 = 10 (мм).

Ответ. Диагональ куба равна 10 мм.

Задание второе. Условие. Необходимо вычислить площадь поверхности куба, если известно, что его объем равен 343 см2.

Решение. Потребуется воспользоваться той же формулой для площади куба. В ней опять неизвестно ребро тела. Но зато дан объем. Из формулы для куба очень просто узнать «а». Оно будет равно кубическому корню из 343. Простой подсчет дает такое значение для ребра: а = 7 см.

Теперь осталось только сосчитать его квадрат и умножить на 6. а2 = 72 = 49, отсюда площадь окажется равной 49 * 6 = 294 (см2).

Ответ. S = 294 см2.

площадь прямоугольного параллелепипеда

Задание третье. Условие. Дана правильная четырехугольная призма со стороной основания 20 дм. Необходимо найти ее боковое ребро. Известно, что площадь параллелепипеда равна 1760 дм2.

Решение. Начинать рассуждения нужно с формулы для площади всей поверхности тела. Только в ней нужно учесть, что ребра «а» и «в» равны. Это следует из утверждения о том, что призма правильная. Значит, в его основании лежит четырехугольник с равными сторонами. Отсюда а = в = 20 дм.

Учитывая это обстоятельство, формула площади упростится до такой:

S = 2 * (а2 + 2ас).

В ней известно все, кроме искомой величины «с», которая как раз и является боковым ребром параллелепипеда. Чтобы его найти, нужно выполнить преобразования:

  • разделить все неравенство на 2;
  • потом перенести слагаемые так, чтобы слева оказалось слагаемое 2ас, а справа - деленная на 2 площадь и квадрат «а», причем последнее будет со знаком «-»;
  • затем поделить равенство на 2а.

В итоге получится выражение:

с = (S/2 - а2) / (2а)

После подстановки всех известных величин и выполнения действий получается, что боковое ребро равно 12 дм.

Ответ. Боковое ребро «с» равняется 12 дм.

Задание четвертое. Условие. Дан прямоугольный параллелепипед. Одна из его граней имеет площадь, равную 12 см2. Необходимо вычислить длину ребра, которое перпендикулярно этой грани. Дополнительное условие: объем тела равен 60 см3.

Решение. Пусть известна площадь той грани, которая расположена лицом к наблюдателю. Если принять за обозначение стандартные буквы для измерений параллелепипеда, то в основании ребра будут «а» и «в», вертикальное - «с». Исходя из этого, площадь известной грани определится как произведение «а» на «с».

Теперь нужно воспользоваться известным объемом. Его формула для прямоугольного параллелепипеда дает произведение всех трех величин: «а», «в» и «с». То есть известная площадь, умноженная на «в», дает объем. Отсюда получается, что искомое ребро можно вычислить из уравнения:

12 * в = 60.

Элементарный расчет дает результат 5.

Ответ. Искомое ребро равно 5 см.

Задание пятое. Условие. Дан прямой параллелепипед. В его основании лежит параллелограмм со сторонами 6 и 8 см, острый угол между которыми равен 30º. Боковое ребро имеет длину 5 см. Требуется вычислить полную площадь параллелепипеда.

Решение. Это тот случай, когда нужно узнать площади всех граней по отдельности. Или, точнее, трех пар: основание и две боковые.

Поскольку в основании расположен параллелограмм, то его площадь вычисляется как произведение стороны на высоту к ней. Сторона известна, а высота - нет. Ее нужно сосчитать. Для этого потребуется значение острого угла. Высота образует в параллелограмме прямоугольный треугольник. В нем катет равен произведению синуса острого угла, который ему противолежит, на гипотенузу.

Пусть известная сторона параллелограмма - это «а». Тогда высота будет записана как в * sin 30º. Таким образом, площадь основания равна а * в * sin 30º.

С боковыми гранями все проще. Они - прямоугольники. Поэтому их площади - это произведение одной стороны на другую. Первая — а * с, вторая — в * с.

Осталось объединить все в одну формулу и сосчитать:

S = 2 * (а * в * sin 30º + а * с + в * с )

После подстановки всех величин получается, что искомая площадь равна 188 см2.

Ответ. S = 188 см2.