Электронная конфигурация атома -схемы и модели

0
0

Электронная конфигурация химических элементов – это отслеживание месторасположения электронов в его атомах. Электроны могут находиться в оболочках, подоболочках и на орбиталях. От распределения электронов зависит валентность элемента, его химическая активность и способность вступать во взаимодействие с другими веществами.

электронная конфигурация атома

Правила оформления записи

По сложившейся традиции квантовое число атомов записывается определенной латинской буквой. Состояние нулевого квантового числа записывается литерой s, после идут буквы p, d, f, g, b и так далее, согласно порядку букв в латинском алфавите.

Как записывается электронная конфигурация

Расположение атомов обычно записывается для тех частиц химических элементов, которые находятся в основном состоянии. Если атом возбужден, запись будет называться возбужденной конфигурацией. Определение электронной конфигурации, применимой в том или ином случае, зависит от трех правил, которые справедливы для атомов всех химических элементов.

Принцип заполнения

Электронная конфигурация атома должна соответствовать принципу заполнения, согласно которому электроны атомов заполняют орбитали по возрастающей – от низшего энергетического уровня к высшему. Низшие орбитали любого атома всегда заполняются в первую очередь. Потом электроны заполняют существующие орбитали второго энергетического уровня, затем орбиталь s, а лишь в конце – орбиталь p-подуровня.

электронная конфигурация

На письме электронная конфигурация химических элементов передается формулой, в которой рядом с наименованием элемента указывают комбинацию чисел и литер, соответствующую положению электронов. Верхний показатель обозначает количество электронов на данных орбиталях.

электронная конфигурация химических элементов

Например, атом водорода обладает единственным электроном. Согласно принципу заполнения, этот электрон находится на s-орбитали. Таким образом, электронная конфигурация водорода будет равна 1s1.

Принцип запрета Паули

Второе правило заполнения орбиталей является частным случаем более обобщенного закона, который открыл швейцарский физик Ф. Паули. Согласно этому правилу, в любом химическом элементе нет пары электронов, имеющих одинаковый набор квантовых чисел. Поэтому на любой орбитали одновременно могу находиться не более двух электронов, и то лишь только в случае, если они имеют неодинаковые спины.

Принцип запрета Паули может быть рассмотрен на конкретном примере. Электронная конфигурация атома бериллия может быть записана, как 1s22s2. При попадании в атом кванта энергии атом переходит в возбужденное состояние. Это может быть записано так:

1s22s2 (обычное состояние) + → 1s22s12p1 (возбужденное состояние).

Если сравнить электронные конфигурации бериллия в обычном и возбужденном состоянии, можно заметить, что число неспаренных электронов у них неодинаковое. Электронная конфигурация бериллия показывает отсутствие неспаренных электронов в обычном состоянии. После попадания в атом кванта энергии появляются два неспаренных электрона.

электронная конфигурация элементов

В принципе, в любом химическом элементе электроны могут переходить на орбитали с более высокими энергиями, но для химии представляют интерес лишь те переходы, которые осуществляются между подуровнями с близкими значениями энергий.

Объяснить эту закономерность можно следующим образом. Образование химической связи всегда сопровождается выделением энергии, потому что атомы переходят в энергетически выгодное состояние. Распаривание электронов на одном энергетическом уровне несет в себе такие затраты энергии, какие вполне компенсируются после образования химической связи. Энергетические затраты на распаривание электронов разных химических уровней оказываются настолько велики, что химическая связь не в состоянии их компенсировать. Если нет химического партнера, возбужденный атом выделяет квант энергии и возвращается в нормальное состояние – этот процесс ученые называют релаксацией.

Правило Гунда

Электронная конфигурация атома подчиняется закону Гунда, согласно которому заполнение орбиталей одной подоболочки начинается электронами, имеющими одинаковый спин. Лишь после того, как все одиночные электроны займут установленные орбитали, к ним присоединяются заряженные частички с противоположным спином.

Правило Гунда наглядно подтверждает электронная конфигурация азота. Атом азота имеет 7 электронов. Электронная конфигурация этого химического элемента выглядит так: ls22s22p3. Все три электрона, которые располагаются на 2р-подоболочке, должны находиться поодиночке, занимая каждую из трех 2-р орбиталей, и все спины при этом у них должны быть параллельны.

Эти правила помогают не только понять, чем обусловлена электронная конфигурация элементов периодической системы, но и понять процессы, происходящие внутри атомов.