Что такое мейоз? Биологическое значение процесса

0
0

Мейоз – один из способов деления клетки. Он связан с образованием гамет, а значит, играет роль в половом размножении. Это важный процесс в эволюционном плане, который позволяет создавать организмам разнообразные популяции в ответ на изменения окружающей среды. Без понимания значимости мейоза невозможно дальнейшее изучение таких разделов биологии как селекция, генетика, экология.

Что такое мейоз

Этот способ деления характерен для образования гамет у животных, растений и грибов. В результате мейоза образуются клетки, обладающие гаплоидным набором хромосом, также называемых половыми клетками.

В отличие от другого варианта умножения клеток – митоза, при котором количество хромосом дочерних особей характерно материнской, при мейозе происходит уменьшение количества хромосом вдвое. Это происходит в два этапа – мейоз 1 и мейоз 2. Первая часть процесса сходна с митозом – перед ней происходит удвоение ДНК, увеличение количества хромосом. Далее следует редукционное деление. В результате образуются клетки с гаплоидным (а не диплоидным) набором хромосом.

что такое мейоз

Основные понятия

Для того чтобы понять, что такое мейоз, необходимо вспомнить определения некоторых понятий, чтобы не возвращаться к ним впоследствии.

мейоз клетки
  • Хромосома – структура в ядре клетки, имеющая нуклеопротеидную природу и сосредоточившая большую часть наследственной информации.
  • Соматические и половые клетки – клетки организма, имеющие разный набор хромосом. В норме (исключая полиплоиды) соматические клетки диплоидны (2n), а половые гаплоидны (n). При слиянии двух половых клеток образуется полноценная соматическая клетка.
  • Центромера – участок хромосомы, отвечающий за экспрессию генов и связывающий хроматиды между собой.
  • Теломера – концевые участки хромосом, выполняют защитную функцию.
  • Митоз – способ деления соматических клеток, создающий в процессе идентичные им копии.
  • Эухроматин и гетерохроматин – участки хроматина в ядре. Первый сохраняет деспирализованное состояние, второй спирализован.

Стадии процесса

Мейоз клетки состоит из двух последовательных делений.

деление мейоза

Первое деление. В период профазы 1 можно рассмотреть хромосомы даже в световой микроскоп. Строение двойной хромосомы составляют две хроматиды и центромеры. Происходит спирализация и, как следствие, укорочение хроматид в хромосоме. Мейоз начинается с метафазы 1. Гомологичные хромосомы располагаются в экваториальной плоскости клетки. Это называется выстраиванием тетрад (бивалентов) хроматида к хроматиде. В этот момент происходят процессы конъюгации и кроссинговера, они описаны ниже. При этих действиях часто теломеры перекрещиваются и накладываются друг на друга. Начинает распадаться оболочка ядра, пропадает ядрышко и становятся видны нити веретена деления. В период анафазы 1 целые хромосомы, состоящие из двух хроматид, отходят к полюсам, причем случайным образом.

хромосомы в мейозе

В результате первого деления в стадии телофазы 1 образуются две клетки с одинарным набором ДНК (в отличие от митоза, дочерние клетки которого диплоидны). Интерфаза непродолжительна, так как не требует удвоения ДНК.

Во втором делении в стадии метафазы 2 к экваториальной части клетки отходит уже одна хромосома (из двух хроматид), образуя метафазную пластинку. Центромера каждой хромосомы делится, хроматиды расходятся к полюсам. На стадии телофазы этого деления образуются две клетки, содержащей по гаплоидному набору хромосом. Наступает уже нормальная интерфаза.

Конъюгация и кроссинговер

Конъюгация – процесс слияния гомологичных хромосом, а кроссинговер – обмен соответствующими участками гомологичных хромосом (начинается в профазе первого деления, заканчивается в метафазе 1 или в анафазе 1 при расхождении хромосом). Это два смежных процесса, которые участвуют в дополнительной рекомбинации генетического материала. Таким образом, хромосомы в гаплоидных клетках не аналогичны таковым в материнской, а существуют уже с заменами.

Разнообразие гамет

Гаметы, образованные в процессе мейоза, не гомологичны друг другу. Хромосомы расходятся в дочерние клетки независимо друг от друга, поэтому могут принести разнообразные аллели будущему потомству. Рассмотрим простейшую классическую задачу: определим типы гамет, образованные у родительского организма по двум простым признакам. Пусть у нас будет темноглазый и темноволосый родитель, гетерозиготный по этим признакам. Формула аллелей, характеризующая его, будет выглядеть как AaBb. Половые клетки будут иметь следующий вид: AB, Ab, aB, ab. То есть четыре типа. Естественно, количество аллелей в живом организме со множеством признаков будет многократно выше, значит и вариантов разнообразия гамет будет во много раз больше. Эти процессы усиливаются конъюгацией и кроссинговером, протекающими в процессе деления.

Существуют ошибки в репликации и расхождениях хромосом. Это приводит к образованию дефектных гамет. В норме такие клетки должны подвергнуться апоптозу (клеточной смерти), но иногда они сливаются с другой половой клеткой, образуя новый организм. Например, таким образом формируется болезнь Дауна у человека, связанная с одной дополнительной хромосомой.

Следует упомянуть, что образовавшиеся половые клетки в разных организмах претерпевают дальнейшее развитие. Например, у человека из одной родительской клетки образуются четыре равноценных сперматозоида – как в классическом мейозе, что такое яйцеклетка - выяснить несколько сложнее. Из четырех потенциально одинаковых клеток образуется одна яйцеклетка и три редукционных тельца.

мейоз происходит

Мейоз: биологическое значение

Почему в процессе мейоза количество хромосом в клетке уменьшается, понятно: если бы этого механизма не было, то при слиянии двух половых клеток происходило бы постоянное увеличение хромосомного набора. Благодаря редукционному делению, в процессе размножения из слияния двух гамет выходит полноценная диплоидная клетка. Таким образом, сохраняется постоянство вида, стабильность его хромосомного набора.

Половина ДНК дочернего организма будет содержать материнскую, а половина отцовскую генетическую информацию.

Механизмы мейоза лежат в основе стерильности межвидовых гибридов. Из-за того, что в клетках таких организмов находятся хромосомы от двух видов, в процессе метафазы 1 они не могут вступить в конъюгацию и процесс образования половых клеток нарушается. Плодовитые гибриды возможны только между близкими видами. В случае полиплоидных организмов (например, многие сельскохозяйственные растения) в клетках, обладающих четным набором хромосом (октоплоиды, тетраплоиды) хромосомы расходятся как и при классическом мейозе. В случае триплоидов хроматиды образуются неравномерно, велик риск получить дефектные гаметы. Эти растения размножают вегетативно.

Таким образом, понимание, что такое мейоз - фундаментальный вопрос биологии. Процессы полового размножения, накопления случайных мутаций, а также передача их потомству лежит в основе наследственной изменчивости и неопределенного отбора. Современная селекция сформирована на основе этих механизмов.

мейоз биологическое

Варианты мейоза

Рассмотренный вариант деления в мейозе характерен главным образом для многоклеточных. У простейших механизм выглядит несколько иначе. В процессе него протекает одно мейотическое деление, фаза кроссинговера соответственно, тоже смещается. Такой механизм считается более примитивным. Он послужил основой делению гаплоидных клеток современных животных, растений, грибов, протекающему в две фазы и обеспечивающему лучшую рекомбинацию генетического материала.

мейоз образуются клетки

Отличия мейоза от митоза

Подытоживая различия между этими двумя типами деления, нужно отметить плоидность дочерних клеток. Если при митозе количество ДНК, хромосом в обоих поколениях одна и та же – диплоидная, то в мейозе образуются гаплоидные клетки. При этом в результате первого процесса образуются две, а в результате второго - четыре клетки. В митозе отсутствует кроссинговер. Разнится и биологическое значение этих делений. Если цель мейоза - образование половых клеток и их последующее сливание у разных организмов, т. е. рекомбинация генетического материала в поколениях, то цель митоза – поддержание стабильности тканей, целостности организма.