Общая теория относительности. Теория относительности Альберта Эйнштейна

Про эту теорию говорили, что её понимают только три человека в мире, а когда математики попытались цифрами выразить то, что из неё следует, сам автор – Альберт Эйнштейн - шутил, что теперь и он перестал её понимать. общая теория относительностиСпециальная и общая теория относительности – неразрывные части учения, на котором строятся современные научные взгляды на устройство мира.

«Год чудес»

В 1905 году ведущий научный печатный орган Германии «Annalen der Physik» («Анналы физики») опубликовал одну за другой четыре статьи 26-летнего Альберта Эйнштейна, работавшего экспертом 3-го класса - мелким клерком - Федерального бюро патентования изобретений в Берне. Он и раньше сотрудничал с журналом, но публикация такого количества работ за один год была экстраординарным событием. Оно стало еще более выдающимся, когда стала ясна ценность идей, которые содержались в каждой из них.постулаты теории относительности

В первой из статей высказывались мысли о квантовой природе света, рассмотрены процессы поглощения и выделения электромагнитного излучения. На этой основе был впервые объяснен фотоэффект – испускание веществом электронов, выбиваемых фотонами света, предложены формулы для расчета количества выделяемой при этом энергии. Именно за теоретические разработки фотоэлектрического эффекта, ставшие началом квантовой механики, а не за постулаты теории относительности Эйнштейну будет присуждена в 1922 году Нобелевская премия по физике.

В другой статье было положено начало прикладным направлениям физической статистики на основе исследования броуновского движения мельчайших, взвешенных в жидкости частиц. Эйнштейн предложил методы поиска закономерности флуктуаций – беспорядочных и случайных отклонений физических величин от их наиболее вероятных значений.

И наконец, в статьях «К электродинамике движущихся тел» и «Зависит ли инерция тела от содержания в нем энергии?» содержались зародыши того, что будет обозначено в истории физики как теория относительности Альберта Эйнштейна, вернее её первая часть – СТО, - специальная теория относительности.

Источники и предшественники

В конце XIX века многим физикам казалось, что большинство глобальных проблем мироздания решено, главные открытия сделаны, и человечеству предстоит лишь использовать накопленные знания для мощного ускорения технического прогресса. Лишь некоторые теоретические неувязки портили гармоническую картину Вселенной, заполненной эфиром и живущей по незыблемым ньютоновским законам.

Гармонию портили теоретические изыскания Максвелла. Его уравнения, которые описывали взаимодействия электромагнитных полей, противоречили общепринятым законам классической механики. Это касалось измерения скорости света в динамических системах отсчета, когда переставал работать принцип относительности Галилея, - математическая модель взаимодействия таких систем при движении со световой скоростью приводила к исчезновению электромагнитных волн.

Кроме того, не поддавался обнаружению эфир, который должен был примирить одновременное существование частиц и волн, макро и микрокосмоса. Эксперимент, который провели в 1887 году Альберт Майкельсон и Эдвард Морли имел целью обнаружение “эфирного ветра”, который неизбежно должен был быть зафиксирован уникальным прибором - интерферометром. Опыт длился целый год – время полного обращения Земли вокруг Солнца. Планета должна была полгода двигаться против эфирного потока, полгода эфир должен был «дуть в паруса» Земли, но результат был нулевым: смещения световых волн под воздействием эфира не обнаружили, что ставило под сомнение сам факт существования эфира.

Лоренц и Пуанкаре

Физики попытались найти объяснение результатам экспериментов по обнаружению эфира. Свою математическую модель предложил Хендрик Лоренц (1853-1928). Она возвращала к жизни эфирное заполнение пространства, но лишь при очень условном и искусственном предположении, что при движении сквозь эфир объекты могут сокращаться в направлении движения. Эту модель доработал великий Анри Пуанкаре (1854-1912).

В работах этих двух ученых впервые появились понятия, во многом составившие главные постулаты теории относительности, и это не дает утихнуть обвинениям Эйнштейна в плагиате. К ним относятся условность понятия об одновременности, гипотеза о постоянности скорости света. Пуанкаре допускал, что при больших скоростях законы механики Ньютона требуют переработки, делал вывод об относительности движения, но в приложении к эфирной теории.

Специальная теория относительности – СТО

Проблемы корректного описания электромагнитных процессов стали побудительной причиной для выбора темы для теоретических разработок, и опубликованные в 1905 году статьи Эйнштейна содержали интерпретацию частного случая - равномерного и прямолинейного движения. К 1915году была сформирована общая теория относительности, которая объясняла и взаимодействия гравитационные взаимодействия, но первой стала теория, получившая название специальной.

Специальная теория относительности Эйнштейна кратко может быть изложена в виде двух основных постулатов. Первый распространяет действие принципа относительности Галилея на все физические явления, а не только на механические процессы. В более общей форме он гласит: Все физические законы одинаковы для всех инерциальных (движущихся равномерно прямолинейно или находящихся в покое) систем отсчета.

Второе утверждение, которое содержит специальная теория относительности: скорость распространения света в вакууме для всех инерциальных систем отсчета одинакова. Далее делается более глобальный вывод: световая скорость – максимально большая величина скорости передачи взаимодействий в природе.

формула теории относительностиВ математических выкладках СТО приводится формула E=mc², которая и раньше появлялась в физических публикациях, но именно благодаря Эйнштейну она стала самой знаменитой и популярной в истории науки. Вывод об эквивалентности массы и энергии – это самая революционная формула теории относительности. Понятие того что любой объект, обладающий массой, содержит огромное количество энергии стало основой для разработок по использованию ядерной энергии и, прежде всего, привело к появлению атомной бомбы.

Эффекты специальной теории относительности

Из СТО вытекает несколько следствий, получивших название релятивистских (relativity англ. –относительность) эффектов. Замедление времени – один из самых ярких. Суть его в том, что в движущейся системе отсчета время идет медленнее. Расчеты показывают, что на космическом корабле, совершившем гипотетический полет до звездной системы Альфа-Центавра и обратно при скорости 0,95 c (c –скорость света) пройдет 7,3 года, а на Земле – 12 лет. Такие примеры часто приводят, когда объясняется теория относительности для чайников, как и связанный с этим эффектом парадокс близнецов.

Еще один эффект – сокращение линейных размеров, - то есть с точки зрения наблюдателя, движущиеся относительно него со скоростью, близкой к c, предметы, будут иметь меньшие линейные размеры в направлении движения, чем их собственная длина. Этот предсказываемый релятивистской физикой эффект называется лоренцевым сокращением.

теория относительности для чайниковПо законам релятивистской кинематики масса движущегося объекта больше массы покоя. Этот эффект становится особенно значим при разработке приборов для исследования элементарных частиц - без учета его трудно представить себе работу БАКа (Большого андронного коллайдера).

Пространство-время

Одним из важнейших компонентов СТО является графическое отображение релятивистской кинематики, особое понятие единого пространства-времени, которое предложил немецкий математик Герман Минковский, бывший одно время преподавателем математики у студента Альберта Эйнштейна.

Суть модели Минковского заключается в совершенно новом подходе к определению положения вступающих во взаимодействие объектов. Специальная теория относительности времени уделяет особое внимание. Время становится не просто четвертой координатой классической трехмерной системы координат, время – не абсолютная величина, а неотделимая характеристика пространства, которое принимает вид пространственно-временного континуума, графически выраженного в виде конуса, в котором и происходят все взаимодействия.

Такое пространство в теории относительности, с её развитием до более обобщающего характера, в дальнейшем было подвергнуто ещё и искривлению, что сделало такую модель подходящей для описания и гравитационных взаимодействий.

Дальнейшее развитие теории

СТО не сразу нашла понимание у физиков, но постепенно она стала основным инструментом описания мира, особенно мира элементарных частиц, который становился главным предметом изучения физической науки. Но задача дополнения СТО объяснением сил тяготения была очень актуальной, и Эйнштейн не прекращал работу, оттачивая принципы общей теории относительности - ОТО. Математическая обработка этих принципов заняла довольно много времени – около 11 лет, и в ней приняли участие специалисты смежных с физикой областей точных наук.

Так, огромный вклад внес ведущий математик того времени Давид Гильберт (1862-1943), ставший одним из соавторов уравнений гравитационного поля. Они явились последним камнем в построении прекрасного здания, получившего наименование - общая теория относительности, или ОТО.

Общая теория относительности - ОТО

Современная теория гравитационного поля, теория структуры «пространство-время», геометрия «пространства-времени», закон физических взаимодействий в неинерциальных системах отчета – всё это различные наименования, которыми наделена общая теория относительности Альберта Эйнштейна.

Теория всемирного тяготения, которая в течении долгого времени определяла взгляды физической науки на гравитацию, на взаимодействия объектов и полей различного размера. Парадоксально, но основным её недостатком была нематериальность, иллюзорность, математичность её сути. Между звездами и планетами находилась пустота, притяжение между небесными телами объяснялось дальнодействием неких сил, причем мгновенным. Общая теория относительности Альберта Эйнштейна наполнила гравитацию физическим содержанием, представила её как непосредственный контакт различных материальных объектов.

Геометрия гравитации

Главная идея, с помощью которой Эйнштейн объяснил гравитационные взаимодействия очень проста. Физическим выражением сил тяготения он объявляет пространство-время, наделенное вполне ощутимыми признаками – метрикой и деформациями, на которые влияет масса объекта, вокруг которого образуются такие искривления. Одно время Эйнштейну даже приписывали призывы вернуть в теорию мироздания понятие эфира, как упругой материальной среды, заполняющей пространство. Он же разъяснял, что ему трудно называть вауумом субстанцию, обладающую множеством качеств, поддающихся описанию.теория относительности эйнштейна кратко

Таким образом, гравитация – проявление геометрических свойств четырехмерного пространства-времени, которое было обозначено в СТО как неискривлённое, но в более общих случаях ото наделяется кривизной, определяющей движение материальных объектов, которым придается одинаковое ускорение в соответствии с декларируемым Эйнштейном принципом эквивалентности.

Этот основополагающий принцип теории относительности объясняет многие «узкие места» ньютоновской теории всемирного тяготения: искривление света, наблюдаемое при прохождении его около массивных космических объектов при некоторых астрономических явлениях и, отмеченное еще древними одинаковое ускорение падения тел, независимо от их массы.

Моделирование кривизны пространства

Обычным примером, с помощью которого объясняется общая теория относительности для чайников, является представление пространства-времени в виде батута - упругой тонкой мембраны, на которую выкладывают предметы (чаще всего шары), имитирующие взаимодействующие объекты. Тяжелые шары прогибают мембрану, образуя вокруг себя воронку. Более мелкий шар, запущенный по поверхности, двигается в полном соответствии с законами гравитации, постепенно скатываясь в углубления, образованные более массивными объектами.

Но такой пример достаточно условен. Реальное пространство-время многомерно, кривизна его тоже не выглядит так элементарно, но принцип формирования гравитационного взаимодействия и суть теории относительности становятся понятны. В любом случае, гипотезы, которая более логично и связно объяснила бы теорию гравитации, пока не существует.

Доказательства истинности

ОТО быстро стала восприниматься как мощное основание, на котором может строиться современная физика. Теория относительности с самого начала поражала своей стройностью и гармонией, и не только специалистов, и вскоре после своего появления стала подтверждаться наблюдениями.

Самая близкая к Солнцу точка – перигелий – орбиты Меркурия постепенно смещается относительно орбит других планет Солнечной системы, что было обнаружено еще в середине XIX века. Такое перемещение – прецессия - не находило разумного объяснения в рамках Ньютоновской теории всемирного тяготения, но было с точностью рассчитано на основе общей теории относительности.

Затмение Солнца, которое произошло в 1919 году предоставило возможность для очередного доказательства ОТО. Артур Эддингтон, который в шутку называл себя вторым человеком из трех, что понимают основы теории относительности, подтвердил предсказанные Эйнштейном отклонения при прохождении фотонов света вблизи светила: в момент затмения стало заметно смещение видимого положения некоторых звезд.

Эксперимент по обнаружению замедления хода часов или гравитационного красного смещения был предложен самим Эйнштейном в числе других доказательств ОТО. Лишь спустя долгие годы удалось подготовить необходимое экспериментальное оборудование и провести этот опыт. Гравитационное смещение частот излучения от излучателя и приёмника, разнесенных по высоте оказалось в пределах, предсказанных ОТО, а физики из Гарварда Роберт Паунд и Глен Ребка, которые провели этот эксперимент, в дальнейшем только повысили точность измерений, и формула теории относительности снова оказалась верной.

В обосновании самых значимых проектов исследования космического пространства обязательно присутствует теория относительности Эйнштейна. Кратко можно сказать, что она стала инженерным инструментом специалистов, в частности тех, кто занимается спутниковыми системами навигации – GPS, ГЛОНАСС и т.д. Рассчитать координаты объекта с нужной точностью, даже в относительно небольшом пространстве, без учета замедлений сигналов, предсказанных ОТО, невозможно. Тем более если речь идет об объектах, разнесенных на космические расстояния, где ошибка в навигации может быть огромной.

Творец теории относительности

Альберт Эйнштейн был еще молодым человеком, когда опубликовал основы теории относительности. Впоследствии ему самому становились ясны её недостатки и нестыковки. В частности, самой главной проблемой ОТО стала невозможность её врастания в квантовую механику, поскольку при описании гравитационных взаимодействий используются принципы, радикально отличающиеся друг от друга. В квантовой механике рассматривается взаимодействие объектов в едином пространстве-времени, а у Эйнштейна само это пространство формирует гравитацию.основы теории относительности

Написание "формулы всего сущего" - единой теории поля, которая устранила бы противоречия ОТО и квантовой физики, было целью Эйнштейна на протяжении долгих лет, он работал над этой теорией до последнего часа, но успеха не достиг. Проблемы ОТО стали стимулом для многих теоретиков в поиске более совершенных моделей мира. Так появлялись теории струн, петлевая квантовая гравитация и множество других.

Личность автора ОТО оставила след в истории сравнимый со значением для науки самой теории относительности. Она не оставляет равнодушным до сих пор. Эйнштейн сам удивлялся, почему столько внимания уделялось ему и его работам со стороны людей, не имевших к физике никакого отношения. Благодаря своим личным качествам, знаменитому остроумию, активной политической позиции и даже выразительной внешности Эйнштейн стал самым знаменитым физиком на Земле, героем множества книг, фильмов и компьютерных игр.суть теории относительности

Конец его жизни многими описывается драматически: он был одинок, считал себя ответственным за появление самого страшного оружия, ставшего угрозой всему живому на планете, его теория единого поля осталась нереальной мечтой, но лучшим итогом можно считать слова Эйнштейна, сказанные незадолго до смерти о том, что свою задачу на Земле он выполнил. С этим трудно спорить.