Огнеупорный материал: виды, свойства, применение

0
0

Технологические процессы производства, а также эксплуатация тепловых агрегатов нередко подразумевают использование огнеупоров. Необходимость такого решения обусловлена требованиями к изоляции и защите целевых объектов. Обычно применяются специальные материалы, выполненные на основе минерального сырья. К использованию допускаются огнеупорные изделия, наделенные достаточными свойствами температурного противодействия, которые регулируются нормативами.

огнеупорный материал

Основные свойства и характеристики огнеупоров

Целый комплекс физических качеств материала рассматривается с точки зрения его поведения под действием высоких температур. Огнеупорность является ключевым свойством, определяющим эффективность применения конкретного изделия. Она выражается в температурном пороговом значении, при достижении которого начинается процесс деформации. Минимальное значение для материалов такого типа составляет 1580 °C. Для сверхогнеупорных материалов это значение превышает 3000 °C. Также учитывается свойство деформации под нагрузкой. Оно указывает уже на механическую целостность изделия, которое находится под влиянием высоких температур. По этой характеристике оценивается огнеупорный материал для печей, испытывающий сжимающее усилие. Механическая стойкость рассчитывается на основе зависимости процессов изменения структуры от температурной нагрузки. Кроме термической стойкости, важна и химическая защищенность. Поскольку огнеупорам в разных эксплуатационных условиях приходится контактировать с агрессивными химическими средами, изначально оценивается и способность противостоять разрушениям такого рода. Специалисты, в частности, выделяют материалы, которые могут сохранять стойкость при воздействии кислых веществ, восстановительных газов и шлаков.

Классификация по форме поставки

Для удобства применения огнеупорных материалов производители изначально наделяют их определенной формой, но также существует и целая группа неформованных изделий. Стандартизация по формованным огнеупорам предполагает выпуск традиционных плиточных и листовых изделий. Такие разновидности используются в техническом обеспечении стен, потолков, конструкций и т. д. Распространены и материалы с индивидуальным форм-фактором. Подобные изделия производятся с расчетом на узкоспециализированные задачи применения. Например, в составе тепловых агрегатов, изоляционных компонентов оборудования, в печных сооружениях и двигателях. В свою очередь, огнеупорные листовые материалы имеют универсальное назначение и чаще задействуются в изоляции производственных помещений. Что касается неформованных изделий, то их применяют в качестве заполнителей. Как правило, это сыпучие материалы, которыми заполняют заранее подготовленные технологические ниши.

Классификация по составу

огнеупорные листовые материалы

Независимо от типоразмера и форм-фактора, огнеупор должен эффективно выполнять основную задачу в виде термозащиты. Качество этой функции зависит уже от характеристик структуры материала изготовления. Так, существуют группы алюмосиликатных, безкислородных и волокнистых огнеупоров. В качестве сырья для алюмосиликатного материала используются оксиды кремния и алюминия. В производстве безкислородных термических изоляторов применяют, соответственно, компоненты, в составе которых отсутствуют кислородные соединения. К таким элементам относятся сульфиды, силициды, нитриды, карбиды и т. д. На основе специальных синтетических веществ изготавливают волокнистые изоляторы. Эту категорию широко представляют огнеупорные листовые материалы, сформированные из поликристаллических или высоко-глиноземных частиц. В качестве модификатора в состав волокнистых заготовок иногда добавляют и оксид циркония.

Классификация углеродистых огнеупоров

огнеупорный материал для печей

Это отдельная группа изоляционных материалов, которая объединяется применением свободного углерода. Наиболее распространены в этом семействе графитированные или угольные блоки, выполненные из термоантрацитов и смеси кокса. Для обеспечения связки между компонентами технологи задействуют каменноугольные смолы и битум. Близки по характеристикам к таким изделиям и графитированные материалы, изготавливаемые уже из нефтяного кокса. У этого изолятора отмечается графитовая структура и пониженное содержание золы, а температурный уровень для обжига составляет 2000 °С. Более сложен в технологическом отношении пирографит. Это огнеупорный материал, получение которого реализуется в ходе распада углеродосодержащих газовых смесей. Также помимо вышеназванных составляющих углеродистых термоизоляторов, производители нередко используют такие материалы, как шамот, корунд, активирующие пасты и суспензии.

Шамотные огнеупоры

огнеупорная плита

Это специализированные огнеупоры, предназначенные для футеровки печей. Внешне такое изделие может быть представлено разными формами. Стандартом считается та же огнеупорная плита, но могут быть и другие вариации – это зависит от конструкции конкретной печи, а также от параметров заготовочной формы. Основу состава представляют алюмосиликатные компоненты. В процессе обжига при повышенной температуре формируется первичный шамот, который затем измельчается и дополняется раствором глины и воды.

К свойствам шамота относится не только противостояние экстремальным температурам, но и безвредность контакта с техническими элементами котлов и печеней. Поскольку многие огнеупоры для поддержания изоляционной функции наделяются специальными химическими элементами, то их не рекомендуется использовать в условиях прямого взаимодействия с некоторыми металлами. В свою очередь, огнеупорный материал на основе шамота безопасен и для материалов топочных камер, и для изоляции футеровок.

Периклазовый огнеупор

огнеупорное стекло

Такие изоляторы также называют магнезиальными, поскольку основу состава представляет сульфат магния. Они получаются в результате проведения безобжиговой технологической операции. И если в предыдущем случае шамот может представляться как огнеупорная глина, то периклаз является по большей части металлизированным изделием. Его часто применяют как часть сплава, на котором базируется печная футеровка. Вместе с магнезиальным компонентом в такой комплекс может входить сталь, медь и никель.

Есть и разновидность периклазоуглеродистых термостойких изоляторов, которые основываются на порошке. Изготовленная на базе периклазовых компонентов огнеупорная плита, в частности, может содержать порядка 25% графита и фенольную порошковую связку. Данная разновидность используется в защите поверхностей электродуговых печей и агрегатов, работающих с газовыми смесями. Также практикуется комбинированное применение периклазовых и шамотных изоляторов в составе единой конструкции.

Огнеупорное стекло

Уникальность данного материала заключается в том, что он в разных видах входит практически во все разновидности огнеупоров. Например, жидкое стекло может рассматриваться как плавкий изолятор в конструкции печей и котлов наряду с металлизированными плитами. Волокнистое огнеупорное стекло может входить в состав глиноземных изоляторов. Структурная универсальность материала обуславливает и гибкость применения. Такое стекло часто используется в случаях, когда необходимо произвести не просто техническую, но и декоративную защиту.

Сыпучие огнеупоры

В сущности это порошковые изделия, которые не проходят специальную формовку. Для них не обязательны процедуры выплавки или компоновки с целью получения определенных размеров. Самым популярным видом представления группы сыпучих изоляторов является огнеупорная смесь, но существуют и другие вариации. Среди них можно выделить суспензии, кусковые элементы, порошки и пасты. В зависимости от консистенции это могут быть полусухие или сухие и пластичные материалы.

Что касается использования, то сыпучие изоляторы применяются как заполнители. Неформованная огнеупорная смесь, например, входит в структуру изоляционной защиты сталелитейного оборудования. Таким образом предохраняются от теплового поражения отдельные детали мартеновских печей и сталеразливочных ковшей. Мелкофракционные сыпучие огнеупоры используют и в корпусах измерительных приборов.

огнеупорная глина

Огнеупорная глина

Промышленная термозащита, основанная на глинистых материалах, относится к группе шамотных изоляторов. Но в данном случае упор делается на сбалансированное сочетание химических элементов, в числе которых могут быть оксиды, кварц, алюмооксидная керамика и т. д. Комбинируя также уровни содержания кальция, натрия и магния технолог может получать огнеупорный материал с разными технико-эксплуатационными характеристиками. К примеру, водопоглощение может составлять 5-15 %, а огнеупорность достигает 2000 °С. При размере зерна в 2 мм пользователь может рассчитывать на защиту кладки из 30 блоков 20-киллограмовым пакетом глины. Что важно, огнеупоры такого типа быстро высыхают, позволяя в кратчайшие сроки после ремонта вводить печи и котлы в эксплуатацию.

Применение огнеупоров

Характер применения определяется набором свойств и формой конкретного изделия. Большинство огнеупоров ориентируются на футеровку печных сооружений и котельных конструкций. Это позволяет увеличивать срок службы агрегата в целом или отдельной его части. Используют такие материалы и в изготовлении спецодежды. Здесь можно отметить брезент огнеупорный, который отличается также износостойкостью и прочностью. Из него делают перчатки, фартуки и другие элементы одежды для промышленной и строительной сферы. В более узких отраслях, например, в упомянутом приборостроении могут использоваться и порошковые, и формовочные изделия. Они служат не только для защиты элементов прибора от повышенной температуры, но и для регуляции терморежима в соответствии с требованиями к условиям применения устройства.

огнеупорная смесь

Заключение

Огнеупорные средства в современном виде наделяются множеством дополнительных качеств. Однако не стоит их рассматривать как полноценную защиту на случай пожара. Во-первых, стандартный огнеупорный материал по своим техническим параметрам не рассчитывается на такие задачи. Во-вторых, его нецелесообразно использовать в подобном качестве и с экономической точки зрения. Для противодействия огню существуют изоляторы другого типа, а огнеупоры все же ориентируются на локальное и целенаправленное создание барьера перед конкретным термическим воздействием.