Виды микроскопов, основные характеристики и назначение

В данной статье мы ознакомимся широко развитой методикой исследования разнообразных микроэлементов нашего мира – микроскопией. Здесь мы рассмотрим описание микроскопа, его предназначение, устройство, правила работы и исторические факты.

Ознакомление с приборами микроскопии

Микроскоп – это механизм, предназначение которого заключается в получении увеличенного изображения какого-либо объекта, а также в измерении структурных деталей, которых невозможно наблюдать невооруженным глазом.

Изобретение и создание разнообразных видов микроскопов позволило создать микроскопию – технологический метод практической эксплуатации этих приборов.

Исторические сведения

Кем был создан первый микроскоп в истории человечества, определить довольно проблематично. Впервые такой механизм был изобретен на рубеже шестнадцатого и семнадцатого веков. Вероятным изобретателем считают Захария Янсена, голландского ученого.

виды микроскопов

Будучи еще ребенком, Янсен используя дюймовую трубочку, установил на двух ее краях по одной выпуклой линзе. Увиденное заставило изобретателя создать нечто новое и улучшить его. Возможно, это обусловило изобретение первого в мире микроскопа, что произошло приблизительно в 1590 году.

Однако еще в 1538 г. итальянец Дж. Фракасторо, работая врачом, выдвинул предположение о комбинировании двух линз с целью создания еще большего увеличения изображений. Следовательно, его работа могла стать началом для появления первого микроскопа. Хотя термин был введен гораздо позже.

Другим первооткрывателем считается Галилео Галилей. Услышав приблизительно в 1609 г. о появлении такого увеличительного устройства и разобравшись в общей идее его механизма, уже в 1612 г. итальянский физик создал собственное массовое изготовление микроскопов. Название этому прибору дал академический друг Галилея, Джованни Фабер в 1613.

электронный микроскоп

Уже в шестидесятых годах XVII века были получены данные о применении микроскопа в научной исследовательской деятельности. Первый это сделал Роберт Гук, занимавшийся наблюдением за устройством разнообразных растений. Именно он в работе «микрография» сделал зарисовки увиденного в микроскоп изображения. Он установил, что растительные организмы строятся из клеток.

Разрешающие способности

Одним из параметров микроскопа является его разрешающая способность. Различные виды микроскопов имеют, соответственно, разный показатель этой характеристики. Так что же это такое?

Разрешающая способность – это возможности прибора показывать четкое и качественное изображение, картинку двух расположенных рядом, фрагментов исследуемого объекта. Показатель степени углубления в микромир и общая возможность его исследования базируются именно на этой способности. Данную характеристику определяет длина волны излучения, которую используют в микроскопе. Главным ограничением является невозможность получения картинки объекта, размеры которого меньше размера длины излучения.

Ввиду написанного выше становится очевидно, что благодаря разрешающей способности мы можем получать четкое изображение деталей изучаемого объекта.

Основные параметры

К другим важным параметрам в строении микроскопа относятся его увеличение, насадки, размер предметного столика, возможности подсветки, оптическое покрытие и т. д.

Рассмотрим главный из перечисленных в этом пункте показателей – увеличение.

строение микроскопа

Увеличение – это общая способность микроскопа показывать изучаемые объекты в больших размерах, чем они есть на самом деле. Вычисление этого параметра можно произвести путем умножения объективного увеличения на окулярное. Данная возможность в оптических микроскопах доходит до 2000 крат, а электронный имеет увеличение в сотни раз больше, чем световой.

Основная характеристика микроскопа – это именно его разрешающая способность, а также увеличение. Поэтому при выборе такого прибора на эти показатели необходимо обратить особое внимание.

Составные элементы

Микроскоп, как и любой другой механизм, состоит из определенных деталей, среди которых выделяют:

  • предметный столик;
  • рукоятку переключения;
  • окуляр;
  • тубус;
  • держатель для тубуса;
  • микрометренный винт;
  • винт грубой наводки;
  • зеркальце;
  • подставку;
  • объектив;
  • стойку;
  • бинокулярную насадку;
  • оптическую головку;
  • конденсор;
  • светофильтр;
  • ирисовую диафрагму.

Ознакомимся с основными характеристиками образующих структур микроскопа.

Объектив – является средством определения полезного увеличения. Образуется из определенного количества линз. Увеличительные возможности указываются цифрами на его поверхности.

Окуляр – состоящий из двух-трех линз элемент микроскопа, увеличение которого обозначается на нем цифрам. Общий показатель увеличительных способностей прибора определяется путем перемножения показателя увеличения объектива на увеличение окуляра.

Осветительные устройства включают в себя зеркальце или электроосветитель, конденсор и диафрагмой, светофильтр и столик.

Механическая система образуется подставкой, коробочкой с микрометренным механизмом и винтом, тубусодержателем, винтом грубой наводки, конденсором, винтом перемещения конденсора, револьвером и предметным столиком.

Оптическая микроскопия

Среди существующих видов микроскопов выделяют несколько основных групп, характеризующихся определенными особенностями устройства и предназначения.

цифровой микроскоп

Глаз человека – это своего рода естественная оптическая система с определенными параметрами, например, разрешением. Разрешение, в свою очередь, характеризуется наименьшим показателем разности в расстоянии между составными компонентами объекта, за которым наблюдают. Важнейшим пунктом здесь является наличие визуального отличия между наблюдаемыми фрагментами. Ввиду того, человеческий глаз не в силах наблюдать естественным путем за микроорганизмами, как раз и были созданы подобные увеличительные приборы.

Оптические микроскопы позволяли работать с излучением, лежащем в диапазоне от 400 до 700 нм и с ближним ультрафиолетом. Это длилось до середины двадцатого века. Подобные приборы не позволяли получать разрешающую способность меньшую, чем полупериод волны излучения опорного типа. Вследствие этого микроскоп позволял наблюдать за структурами, расстояние между которыми было около 0.20 мкм, из чего следует, что максимальное увеличение могло достигать 2000 крат.

Микроскопы бинокулярного типа

Бинокулярный микроскоп – это устройство, при помощи которого можно получить объемное увеличенное изображение. Другое название таких приборов – стереомикроскопы. Они позволяют человеку четко различать детали исследуемых объемных объектов.

В бинокулярном микроскопе рассмотрение объекта происходит сквозь две линзы, независимые между собой. В настоящее время используются сразу 2 окуляра и 1 объектов. Отлично работают в условиях наличия проходящего и отраженного света.

Электронная микроскопия

Появление электронного микроскопа позволило использовать электроны, обладающие свойствами и частиц, и волн в микроскопии.

бинокулярный микроскоп

Электрон обладает длинной волны, которая зависит от его энергетического потенциала: E = Ve, где V – величина разности потенциалов, e – электронный заряд. Длина волны электрона при пролете разности в потенциалах равной 200000 В составит около 0,1 нм. Электрон легко фокусируется при помощи электромагнитных линз, что обуславливается его зарядом. После электронную версию изображения переводят в видимую.

Среди таких увеличительных устройств набрал широкую известность цифровой микроскоп. Он позволяет подключать адаптеры к аппарату с целью переноса изображения на компьютер и его сохранения. При работе с подобными устройствами камера регистрирует наблюдаемое изображение, далее переносит его на ПК при помощи USB-кабеля.

Цифровой микроскоп может классифицироваться в соответствии с его режимом работы, увеличительной кратности, числу подсветок и разрешению камеры. Их главными достоинствами считаются наличие возможности переносить изображение на ПК и сохранять его, возможность в пересылке полученной информации на большие расстояния, редактирование, детальный анализ и хранение результатов исследования, а также умение проецировать картинку при помощи проекторов.

Электронные микроскопы обладают разрешающей способностью превосходящей световые в 1000-10000 раз.

Сканирующие зонды

Другой вид микроскопа – это сканирующий зонд. Сравнительно новая ветвь в развитии таких приборов.

первый микроскоп

Сокращенно их называют – ЗСМ. Изображение воспроизводится благодаря регистрации взаимодействия зонда и поверхности, которую он исследует. В современном мире такие механизмы позволяют наблюдать за взаимодействием зонда с атомами. Разрешающая способность ЗСМ сопоставима с микроскопами электронного типа, а в некоторых параметрах даже лучше.

Рентгеновская микроскопия

Рентгеновский микроскоп был создан для наблюдением за чрезвычайно малыми объектами, величина которых сопоставима с рентгеновскими волнами. Базируется на эксплуатации излучения электромагнитного характера, в котором длина волны не превышает один нанометр.

правила работы с микроскопом

Разрешающая способность таких микроскопов заняла промежуточное место между оптическими и электронными. Теоретическая р.с. такого устройства может достигать 2-20 нм, что гораздо больше возможностей оптических микроскопов.

Общие сведения для работы с микроскопом

Эксплуатируя данный прибор необходимо знать правила работы с микроскопом:

  1. Работу необходимо выполнять сидя.
  2. Следует осмотреть прибор и протереть от пыли мягкими салфетками зеркальце, объектив и окуляр.
  3. При работе с микроскопом нежелательно его передвигать, поставить слева от себя.
  4. Произвести открытие диафрагмы, привести конденсор к верхнему положению.
  5. Работу стоит начинать с малого увеличения.
  6. Объектив довести до одного сантиметра от стекла с наблюдаемым объектом.
  7. Равномерно распределить освещение поля зрения, используя окуляр, в который необходимо смотреть глазом, и вогнутое зеркало.
  8. Переместить микропрепарат на столик микроскопа. Наблюдая сбоку, опустить объектив до уровня 4-5 мм над исследуемым объектом, используя для этого макровинт.
  9. Глядя глазом в окуляр, производить вращательные движения грубого винта, для подведения объектива к положению, в котором будет четко видно изображение.
  10. Перемещая стекло с препаратом, найдите место, где исследуемый объект будет располагаться по центру вашего поля зрения в микроскопе.
  11. В случае отсутствия изображения, повторите с шестого по девятый пункты.
  12. Используя микрометренный винт, добейтесь необходимой четкости изображения. Обратит внимание на то, не выходит ли точка между рисками на микрометренном механизме, за пределы рисок. Если выходит, то верните ее в стандартное положение.
  13. Заключаем правила работы с микроскопом, уборкой рабочего места. Необходимо вернуть увеличение с большого на малое, произвести поднятие объектива, снять препарат и протереть микроскоп, далее накрыть полиэтиленом и вернуть в шкафчик.

Данные правила в большей мере относятся к оптическим микроскопам. Строение микроскопа, например, электронного или рентгеновского, отличается от светового, а потому основные правила работы могут также отличаться. Особенности работы с такими устройствами можно найти в инструкции к ним.