Полупроводниковые материалы: примеры полупроводников

В нашей статье будут рассмотрены примеры полупроводников, их свойства и сферы применения. Эти материалы имеют свое место в радиотехнике и электронике. Они являются чем-то средним между диэлектриком и проводником. Кстати, простое стекло тоже можно считать полупроводником – в обычном состоянии оно ток не проводит. Зато при сильном нагреве (практически до жидкого состояния) происходит изменение свойств и стекло становится проводником. Но это исключительный пример, у других материалов все обстоит немного иначе.

Основные особенности полупроводников

Показатель проводимости составляет около 1000 Ом*м (при температуре 180 градусов). Если сравнивать с металлами, то у полупроводников происходит уменьшение удельной проводимости при возрастании температуры. Такое же свойство имеется у диэлектриков. У полупроводниковых материалов имеется достаточно сильная зависимость показателя удельной проводимости от количества и типа примесей.

Полевой транзистор

Допустим, если ввести в чистый германий всего тысячную долю мышьяка, произойдет увеличение проводимости примерно в 10 раз. Все без исключения полупроводники чувствительны к воздействиям извне – ядерному облучению, свету, электромагнитным полям, давлению и т. д. Можно привести примеры полупроводниковых материалов – это сурьма, кремний, германий, теллур, фосфор, углерод, мышьяк, йод, бор, а также различные соединения этих веществ.

Особенности применения полупроводников

Благодаря тому, что у полупроводниковых материалов такие специфические свойства, они получили довольно широкое распространение. На их основе изготавливают диоды, транзисторы, симисторы, лазеры, тиристоры, датчики давления, магнитного поля, температуры, и т. д. После освоения полупроводников произошло коренное преобразование в автоматике, радиотехнике, кибернетике и электротехнике. Именно при помощи использования полупроводников удалось достичь таких маленьких габаритов техники – нет нужды использовать массивные блоки питания и радиолампы размером с полуторалитровую банку.

Ток в полупроводниках

В проводниках ток определяется тем, куда двигаются свободные электроны. В полупроводниковых материалах свободных электронов очень много, на это есть причины. Все валентные электроны, которые имеются в полупроводнике, не свободны, так как они связываются со своими атомами.

Расположение дырок и электронов в атомах

В полупроводниках ток может появляться и меняться в достаточно широких пределах, но только при наличии воздействия извне. Ток меняется при нагреве, облучении, введении примесей. Все воздействия способны значительно увеличить у валентных электронов энергию, что способствует их отрыву от атомов. А приложенное напряжение заставляет эти электроны перемещаться в определенном направлении. Другими словами, эти электроны становятся носителями тока.

Дырки в полупроводниках

При повышении температуры или интенсивности внешнего облучения происходит увеличение количества свободных электронов. Следовательно, увеличивается ток. Те атомы в веществе, которые потеряли электроны, становятся положительными ионами, они не перемещаются. С внешней стороны атома, с которого ушел электрон, остается дырка. В нее может встать другой электрон, который покинул свое место в атоме поблизости. В результате этого на внешней части у соседнего атома образуется дырка – он превращается в ион (положительный).

Если к полупроводнику приложить напряжение, то электроны начнут двигаться от одних атомов к соседним в определенном направлении. Дырки же начнут перемещаться во встречном направлении. Дырка – это положительно заряженная частица. Причем заряд у нее по модулю такой же, как у электрона. С помощью такого определения можно существенно упростить анализ всех процессов, которые протекают в полупроводниковом кристалле. Ток дырок (обозначается I Д) – это перемещение частиц в направлении, обратном движению электронов.

Электронно-дырочный переход

У полупроводника имеется два типа электропроводимости – электронная и дырочная. В чистых полупроводниках (без примесей) у дырок и электронов концентрация (N Д и N Э соответственно) одинаковая. По этой причине такая электропроводность называется собственной. Суммарное значение тока будет равно:

I = I Э+I Д.

Но если учесть тот факт, что у электронов значение подвижности больше, чем у дырок, можно прийти к такому неравенству:

I Э > I Д.

Подвижность заряда обозначается буквой М, это одно из главных свойств полупроводников. Подвижность – это отношение двух параметров. Первый – скорость перемещения носителя заряда (обозначается буквой V с индексом «Э» или «Д», в зависимости от типа носителя), второй – это напряженность электрического поля (обозначается буквой Е). Можно выразить в виде формул:

М Э = (V Э / Е).

М Д = (V Д / Е).

Подвижность позволяет определить путь, который проходит дырка или электрон за одну секунду при значении напряженность 1 В/см. можно теперь вычислить собственный ток полупроводникового материала:

I = N * e * (М Э + М Д) * E.

Но нужно отметить, что у нас есть равенства:

V Э Э.

N = N Э = N Д.

Буквой е в формуле обозначается заряд электрона (это постоянная величина).

Полупроводниковые приборы

Сразу можно привести примеры полупроводниковых приборов – это транзисторы, тиристоры, диоды, и даже микросхемы. Конечно, это далеко не полный список. Чтобы изготовить полупроводниковый прибор, нужно использовать материалы, у которых проводимость дырочная или электронная. Чтобы получить такой материал, необходимо в идеально чистый полупроводник с концентрацией примесей менее 10-11% ввести добавку (ее называют легирующей примесью).

Переход в различных транзисторах

Те примеси, у которых валентность оказывается больше, чем у полупроводника, отдают свободные электроны. Эти примеси называются донорами. А вот те, у которых валентность меньше, чем у полупроводника, имеют свойство хватать и удерживать электроны. Их называют акцепторами. Для того чтобы получился полупроводник, который будет обладать лишь проводимостью электронного типа, в исходный материал достаточно ввести вещество, у которого валентность будет всего на единицу больше. Для примера полупроводников в физике школьного курса рассматривается германий – его валентность равна 4. В него добавляется донор – фосфор или сурьма, у них валентность равна пяти. Металлов-полупроводников немного, они практически не используются в технике.

При этом 4 электрона в каждом атоме осуществляют установку четырех парных (ковалентных) связей с германием. Пятый электрон не имеет такой связи, а значит, он в свободном состоянии. И если приложить к нему напряжение, он будет образовывать электронный ток.

Токи в полупроводниках

Когда ток электронов больше, чем дырок, полупроводник называют n-типа (отрицательного). Рассмотрим пример – в идеально чистый германий вводят немного примеси акцептора (допустим, бор). При этом каждый атом акцептора начнет устанавливать ковалентные связи с германием. Но вот четвертый атом германия не имеет связи с бором. Следовательно, у определенного количества атомов германия будет иметься только один электрон без связи ковалентного типа.

Но достаточно незначительного воздействия извне, чтобы электроны начали покидать свои места. При этом у германия образовываются дырки.

Электроны и дырки в атомах

По рисунку видно, что на 2, 4 и 6 атомах свободные электроны начинают присоединяться к бору. По этой причине не создается ток в полупроводнике. На поверхности атомов германия образуются дырки с номерами 1, 3 и 5 – с их помощью происходит переход на них электронов от расположенных рядом атомов. На последних же начинают появляться дырки, так как электроны с них улетают.

Каждая дырка, которая возникает, начнет переходить между атомами германия. При воздействии напряжения дырки начинают двигаться упорядоченно. Другими словами, в веществе появляется ток дырок. Такой тип полупроводников называется дырочным или p-типа. При воздействии напряжения двигаются не только электроны, но и дырки – они встречают на своем пути разнообразные препятствия. При этом происходит потеря энергии, отклонение от изначальной траектории. Иными словами, заряд носителей рассеивается. Все это происходит из-за того, что в полупроводнике содержатся загрязняющие примеси.

Вольт-амперная характеристика

Чуть выше были рассмотрены примеры веществ-полупроводников, которые используются в современной технике. У всех материалов имеются свои особенности. В частности, одно из ключевых свойств – это нелинейность вольт-амперной характеристики.

Зависимость напряжения от сопротивления

Иными словами, когда происходит увеличение напряжения, которое прикладывается к полупроводнику, происходит быстрое возрастание тока. Сопротивление при этом резко уменьшается. Такое свойство нашло применение в разнообразных вентильных разрядниках. Примеры неупорядоченных полупроводников можно более детально рассмотреть в специализированной литературе, их применение строго ограничено.

Хороший пример: при рабочем значении напряжения у разрядника сопротивление высокое, поэтому от ЛЭП ток не уходит в землю. Но как только в провод или опору ударяет молния, сопротивление очень быстро уменьшается практически до нуля, весь ток уходит в землю. И напряжение снижается до нормального значения.

Симметричная ВАХ

Вольт-амперная характеристика полупроводникового материала

Когда происходит смена полярности напряжения, в полупроводнике ток начинает протекать в обратном направлении. И меняется он по тому же закону. Это говорит о том, что полупроводниковый элемент обладает симметричной вольт-амперной характеристикой. В том случае, если одна часть элемента имеет дырочный тип, а вторая – электронный, то на границе их соприкосновения появляется p-n-переход (электронно-дырочный). Именно такие переходы имеются во всех элементах – транзисторах, диодах, микросхемах. Но только в микросхемах на одном кристалле собирается сразу несколько транзисторов – иногда их количество более десятка.

Как происходит образование перехода

А теперь давайте рассмотрим, как происходит образование p-n-перехода. Если контакт дырочного и электронного полупроводников не очень качественный, то происходит образование системы, состоящей из двух областей. Одна будет иметь дырочную проводимость, а вторая – электронную.

Полупроводники на плате

И электроны, которые находятся в n-области, начнут диффундировать туда, где их концентрация меньше – то есть, в р-область. Одновременно с электронами дырки двигаются, но направление у них обратное. При взаимной диффузии происходит уменьшение концентрации в n-области электронов и в р-области дырок.

Основное свойство p-n-перехода

Вольт-амперная характеристика

Рассмотрев примеры проводников, полупроводников и диэлектриков, можно понять, что свойства у них различные. Например, основное качество полупроводников – это возможность пропускания тока только лишь в одном направлении. По этой причине приборы, изготовленные с использованием полупроводников, получили широкое распространение в выпрямителях. На практике, используя несколько измерительных приборов, можно увидеть работу полупроводников и оценить массу параметров – как в режиме покоя, так и при воздействии внешних «раздражителей».