Относительная и абсолютная погрешность: понятие, расчет и свойства

В наш век человек придумал и использует огромное множество всевозможных измерительных приборов. Но какой бы совершенной ни была технология их изготовления, все они имеют большую или меньшую погрешность. Этот параметр, как правило, указывается на самом инструменте, и для оценки точности определяемой величины нужно уметь разбираться в том, что означают указанные на маркировке цифры. Кроме того, относительная и абсолютная погрешность неизбежно возникает при сложных математических расчетах. Она широко применяется в статистике, промышленности (контроль качества) и в ряде других областей. Как рассчитывается эта величина и как трактовать ее значение – об этом как раз и пойдет речь в данной статье.абсолютная погрешность

Абсолютная погрешность

Обозначим через х приближенное значение какой-либо величины, полученное, к примеру, посредством однократного измерения, а через х0 – ее точное значение. Теперь вычислим модуль разности между этими двумя числами. Абсолютная погрешность – это как раз и есть то значение, что получилось у нас в результате этой нехитрой операции. Выражаясь языком формул, данное определение можно записать в таком виде: Δ x = | x – x 0 |.абсолютная погрешность это

Относительная погрешность

Абсолютное отклонение обладает одним важным недостатком – оно не позволяет оценить степень важности ошибки. Например, покупаем мы на рынке 5 кг картофеля, а недобросовестный продавец при измерении веса ошибся на 50 грамм в свою пользу. То есть абсолютная погрешность составила 50 грамм. Для нас такая оплошность будет сущей мелочью и мы даже не обратим на нее внимания. А представьте себе, что случится, если при приготовлении лекарства произойдет подобная ошибка? Тут уже все будет намного серьезней. А при загрузке товарного вагона наверняка возникают отклонения намного больше данного значения. Поэтому сама по себе абсолютная погрешность малоинформативная. Кроме нее очень часто дополнительно рассчитывают относительное отклонение, равное отношению абсолютной погрешности к точному значению числа. Это записывается следующей формулой: δ = Δ x / x0.относительная и абсолютная погрешность

Свойства погрешностей

Предположим, у нас есть две независимые величины: х и у. Нам требуется рассчитать отклонение приближенного значения их суммы. В этом случае мы может рассчитать абсолютную погрешность как сумму предварительно рассчитанных абсолютных отклонений каждой из них. В некоторых измерениях может произойти так, что ошибки в определении значений x и y будут друг друга компенсировать. А может случиться и такое, что в результате сложения отклонения максимально усилятся. Поэтому, когда рассчитывается суммарная абсолютная погрешность, следует учитывать наихудший из всех вариантов. То же самое справедливо и для разности ошибок нескольких величин. Данное свойство характерно лишь для абсолютной погрешности, и к относительному отклонению его применять нельзя, поскольку это неизбежно приведет к неверному результату. Рассмотрим эту ситуацию на следующем примере.

Задача

Предположим, измерения внутри цилиндра показали, что внутренний радиус (R1) равен 97 мм, а внешний (R2) – 100 мм. Требуется определить толщину его стенки. Вначале найдем разницу: h = R2 – R1 = 3 мм. Если в задаче не указывается чему равна абсолютная погрешность, то ее принимают за половину деления шкалы измерительного прибора. Таким образом, Δ(R2) = Δ(R1) = 0,5 мм. Суммарная абсолютная погрешность равна: Δ(h) = Δ(R2) +Δ(R1) = 1 мм. Теперь рассчитаем относительно отклонение всех величин:

δ(R1) = 0,5/100 = 0,005,

δ(R1) = 0,5/97 ≈ 0,0052,

δ(h) = Δ(h)/h = 1/3 ≈ 0,3333>> δ(R1).

Как видим, погрешность измерения обоих радиусов не превышает 5,2%, а ошибка при расчете их разности – толщины стенки цилиндра – составила целых 33,(3)%!

Следующее свойство гласит: относительное отклонение произведения нескольких числе примерно равно сумме относительных отклонений отдельных сомножителей:

δ(ху) ≈ δ(х) + δ(у).

Причем данное правило справедливо независимо от количества оцениваемых величин. Третье и последнее свойство относительной погрешности состоит в том, что относительная оценка числа k-й степени приближенно в | k | раз превышает относительную погрешность исходного числа:

δ(хk) ≈ |k| x δ(х).