Коэффициент корреляции и причинно-следственная связь: формулы и их интерпретация

Коэффициент корреляции – это степень связи между двумя переменными. Его расчет дает представление о том, есть ли зависимость между двумя массивами данных. В отличие от регрессии, корреляция не позволяет предсказывать значения величин. Однако расчет коэффициента является важным этапом предварительного статистического анализа. Например, мы установили, что коэффициент корреляции между уровнем прямых иностранных инвестиций и темпом роста ВВП является высоким. Это дает нам представление о том, что для обеспечения благосостояния нужно создать благоприятный климат именно для зарубежных предпринимателей. Не такой уж и очевидный вывод на первый взгляд!

коэффициент корреляции

Корреляция и причинность

Пожалуй, нет ни одной сферы статистики, которая бы так прочно вошла в нашу жизнь. Коэффициент корреляции используется во всех областях общественных знаний. Основная его опасность заключается в том, что зачастую его высокими значениями спекулируют для того, чтобы убедить людей и заставить их поверить в какие-то выводы. Однако на самом деле сильная корреляция отнюдь не свидетельствует о причинно-следственной зависимости между величинами.

Есть ли зависимость между двумя переменными?

Коэффициент корреляции: формула Пирсона и Спирмана

Существует несколько основных показателей, которые характеризуют связь между двумя переменными. Исторически первым является коэффициент линейной корреляции Пирсона. Его проходят еще в школе. Он был разработан К. Пирсоном и Дж. Юлом на основе работ Фр. Гальтона. Этот коэффициент позволяет увидеть взаимосвязь между рациональными числами, которые изменяются рационально. Он всегда больше -1 и меньше 1. Отрицательно число свидетельствует об обратно пропорциональной зависимости. Если коэффициент равен нулю, то связи между переменными нет. Равен положительному числу – имеет место прямо пропорциональная зависимость между исследуемыми величинами. Коэффициент ранговой корреляции Спирмана позволяет упростить расчеты за счет построения иерархии значений переменных.

коэффициент корреляции формула

Отношения между переменными

Корреляция помогает найти ответ на два вопроса. Во-первых, является ли связь между переменными положительной или отрицательной. Во-вторых, насколько сильна зависимость. Корреляционный анализ является мощным инструментом, с помощью которого можно получить эту важную информацию. Легко увидеть, что семейные доходы и расходы падают и растут пропорционально. Такая связь считается положительной. Напротив, при росте цены на товар, спрос на него падает. Такую связь называют отрицательной. Значения коэффициента корреляции находятся в пределах между -1 и 1. Нуль означает, что зависимости между исследуемыми величинами нет. Чем ближе полученный показатель к крайним значениям, тем сильнее связь (отрицательная или положительная). Об отсутствии зависимости свидетельствует коэффициент от -0,1 до 0,1. Нужно понимать, что такое значение свидетельствует только об отсутствии линейной связи.

Коэффициент корреляции и его значение

Особенности применения

Использование обоих показателей сопряжено с определенными допущениями. Во-первых, наличие сильной связи, не обуславливает того факта, что одна величина определяет другую. Вполне может существовать третья величина, которая определяет каждую из них. Во-вторых, высокий коэффициент корреляции Пирсона не свидетельствует о причинно-следственной связи между исследуемыми переменными. В-третьих, он показывает исключительно линейную зависимость. Корреляция может использоваться для оценки значимых количественных данных (например, атмосферного давления, температуры воздуха), а не таких категорий, как пол или любимый цвет.

Множественный коэффициент корреляции

Пирсон и Спирман исследовали связь между двумя переменными. Но как действовать в том случае, если их три или даже больше. Здесь на помощь приходит множественный коэффициент корреляции. Например, на валовый национальный продукт влияют не только прямые иностранные инвестиции, но и монетарная и фискальная политика государства, а также уровень экспорта. Темп роста и объем ВВП – это результат взаимодействия целого ряда факторов. Однако нужно понимать, что модель множественной корреляции основывается на целом ряде упрощений и допущений. Во-первых, исключается мультиколлинеарность между величинами. Во-вторых, связь между зависимой и оказывающими на нее влияние переменными считается линейной.

множественный коэффициент корреляции

Области использования корреляционно-регрессионного анализа

Данный метод нахождения взаимосвязи между величинами широко применяется в статистике. К нему чаще всего прибегают в трех основных случаях:

  1. Для тестирования причинно-следственных связей между значениями двух переменных. В результате исследователь надеется обнаружить линейную зависимость и вывести формулу, которая описывает эти отношения между величинами. Единицы их измерения могут быть различными.
  2. Для проверки наличия связи между величинами. В этом случае никто не определяет, какая переменная является зависимой. Может оказаться, что значение обеих величин обуславливает какой-то другой фактор.
  3. Для вывода уравнения. В этом случае можно просто подставить в него числа и узнать значения неизвестной переменной.

Человек в поисках причинно-следственной связи

Сознание устроено таким образом, что нам обязательно нужно объяснить события, которые происходят вокруг. Человек всегда ищет связь между картиной мира, в котором он живет, и получаемой информацией. Часто мозг создает порядок из хаоса. Он запросто может увидеть причинно-следственную связь там, где ее нет. Ученым приходится специально учиться преодолевать эту тенденцию. Способность оценивать связи между данными объективно необходима в академической карьере.

Предвзятость средств массовой информации

Рассмотрим, как наличие корреляционной связи может быть неправильно истолковано. Группу британских студентов, отличающихся плохим поведением, опросили относительно того, курят ли их родители. Потом тест опубликовали в газете. Результат показал сильную корреляцию между курением родителей и правонарушениями их детей. Профессор, который проводил это исследование, даже предложил поместить на пачки сигарет предупреждение об этом. Однако существует целый ряд проблем с таким выводом. Во-первых, корреляция не показывает, какая из величин является независимой. Поэтому вполне можно предположить, что пагубная привычка родителей вызвана непослушанием детей. Во-вторых, нельзя с уверенностью сказать, что обе проблемы не появились из-за какого-то третьего фактора. Например, низкого дохода семей. Следует отметить эмоциональный аспект первоначальных выводов профессора, который проводил исследование. Он был ярым противником курения. Поэтому нет ничего удивительного в том, что он интерпретировал результаты своего исследования именно так.

Степень корреляции

Выводы

Неправильное толкование корреляции как причинно-следственной связи между двумя переменными может стать причиной позорных ошибок в исследованиях. Проблема состоит в том, что оно лежит в самой основе человеческого сознания. Многие маркетинговые трюки построены именно на этой особенности. Понимание различия между причинно-следственной связью и корреляцией позволяет рационально анализировать информацию как в повседневной жизни, так и в профессиональной карьере.